Abstract:Vision-language models (VLMs) often generate massive visual tokens that greatly increase inference latency and memory footprint; while training-free token pruning offers a practical remedy, existing methods still struggle to balance local evidence and global context under aggressive compression. We propose Focus-Scan-Refine (FSR), a human-inspired, plug-and-play pruning framework that mimics how humans answer visual questions: focus on key evidence, then scan globally if needed, and refine the scanned context by aggregating relevant details. FSR first focuses on key evidence by combining visual importance with instruction relevance, avoiding the bias toward visually salient but query-irrelevant regions. It then scans for complementary context conditioned on the focused set, selecting tokens that are most different from the focused evidence. Finally, FSR refines the scanned context by aggregating nearby informative tokens into the scan anchors via similarity-based assignment and score-weighted merging, without increasing the token budget. Extensive experiments across multiple VLM backbones and vision-language benchmarks show that FSR consistently improves the accuracy-efficiency trade-off over existing state-of-the-art pruning methods. The source codes can be found at https://github.com/ILOT-code/FSR
Abstract:Large language models (LLMs) have exhibited remarkable performance on complex reasoning tasks, with reinforcement learning under verifiable rewards (RLVR) emerging as a principled framework for aligning model behavior with reasoning chains. Despite its promise, RLVR remains prohibitively resource-intensive, requiring extensive reward signals and incurring substantial rollout costs during training. In this work, we revisit the fundamental question of data and compute efficiency in RLVR. We first establish a theoretical lower bound on the sample complexity required to unlock reasoning capabilities, and empirically validate that strong performance can be achieved with a surprisingly small number of training instances. To tackle the computational burden, we propose Dynamic One-Shot Policy Refinement (DoPR), an uncertainty-aware RL strategy that dynamically selects a single informative training sample per batch for policy updates, guided by reward volatility and exploration-driven acquisition. DoPR reduces rollout overhead by nearly an order of magnitude while preserving competitive reasoning accuracy, offering a scalable and resource-efficient solution for LLM post-training. This approach offers a practical path toward more efficient and accessible RL-based training for reasoning-intensive LLM applications.
Abstract:Watermarking methods have always been effective means of protecting intellectual property, yet they face significant challenges. Although existing deep learning-based watermarking systems can hide watermarks in images with minimal impact on image quality, they often lack robustness when encountering image corruptions during transmission, which undermines their practical application value. To this end, we propose a high-quality and robust watermark framework based on the diffusion model. Our method first converts the clean image into inversion noise through a null-text optimization process, and after optimizing the inversion noise in the latent space, it produces a high-quality watermarked image through an iterative denoising process of the diffusion model. The iterative denoising process serves as a powerful purification mechanism, ensuring both the visual quality of the watermarked image and enhancing the robustness of the watermark against various corruptions. To prevent the optimizing of inversion noise from distorting the original semantics of the image, we specifically introduced self-attention constraints and pseudo-mask strategies. Extensive experimental results demonstrate the superior performance of our method against various image corruptions. In particular, our method outperforms the stable signature method by an average of 10\% across 12 different image transformations on COCO datasets. Our codes are available at https://github.com/920927/ONRW.
Abstract:Federated learning (FL) has been considered a promising privacy preserving distributed edge learning framework. Over-the-air computation (AirComp) technique leveraging analog transmission enables the aggregation of local updates directly over-the-air by exploiting the superposition properties of wireless multiple-access channel, thereby drastically reducing the communication bottleneck issues of FL compared with digital transmission schemes. This work points out that existing AirComp-FL overlooks a key practical constraint, the instantaneous peak-power constraints imposed by the non-linearity of radiofrequency power amplifiers. We present and analyze the effect of the classic method to deal with this issue, amplitude clipping combined with filtering. We investigate the effect of instantaneous peak-power constraints in AirComp-FL for both single-carrier and multi-carrier orthogonal frequency-division multiplexing (OFDM) systems. We highlight the specificity of AirComp-FL: the samples depend on the gradient value distribution, leading to a higher peak-to-average power ratio (PAPR) than that observed for uniformly distributed signals. Simulation results demonstrate that, in practical settings, the instantaneous transmit power regularly exceeds the power-amplifier limit; however, by applying clipping and filtering, the FL performance can be degraded. The degradation becomes pronounced especially in multi-carrier OFDM systems due to the in-band distortions caused by clipping and filtering.




Abstract:Sensor-based human activity recognition (HAR) mines activity patterns from the time-series sensory data. In realistic scenarios, variations across individuals, devices, environments, and time introduce significant distributional shifts for the same activities. Recent efforts attempt to solve this challenge by applying or adapting existing out-of-distribution (OOD) algorithms, but only in certain distribution shift scenarios (e.g., cross-device or cross-position), lacking comprehensive insights on the effectiveness of these algorithms. For instance, is OOD necessary to HAR? Which OOD algorithm performs the best? In this paper, we fill this gap by proposing HAROOD, a comprehensive benchmark for HAR in OOD settings. We define 4 OOD scenarios: cross-person, cross-position, cross-dataset, and cross-time, and build a testbed covering 6 datasets, 16 comparative methods (implemented with CNN-based and Transformer-based architectures), and two model selection protocols. Then, we conduct extensive experiments and present several findings for future research, e.g., no single method consistently outperforms others, highlighting substantial opportunity for advancement. Our codebase is highly modular and easy to extend for new datasets, algorithms, comparisons, and analysis, with the hope to facilitate the research in OOD-based HAR. Our implementation is released and can be found at https://github.com/AIFrontierLab/HAROOD.
Abstract:The reproduction of hardware architectures from academic papers remains a significant challenge due to the lack of publicly available source code and the complexity of hardware description languages (HDLs). To this end, we propose \textbf{ArchCraft}, a Framework that converts abstract architectural descriptions from academic papers into synthesizable Verilog projects with register-transfer level (RTL) verification. ArchCraft introduces a structured workflow, which uses formal graphs to capture the Architectural Blueprint and symbols to define the Functional Specification, translating unstructured academic papers into verifiable, hardware-aware designs. The framework then generates RTL and testbench (TB) code decoupled via these symbols to facilitate verification and debugging, ultimately reporting the circuit's Power, Area, and Performance (PPA). Moreover, we propose the first benchmark, \textbf{ArchSynthBench}, for synthesizing hardware from architectural descriptions, with a complete set of evaluation indicators, 50 project-level circuits, and around 600 circuit blocks. We systematically assess ArchCraft on ArchSynthBench, where the experiment results demonstrate the superiority of our proposed method, surpassing direct generation methods and the VerilogCoder framework in both paper understanding and code completion. Furthermore, evaluation and physical implementation of the generated executable RTL code show that these implementations meet all timing constraints without violations, and their performance metrics are consistent with those reported in the original papers.




Abstract:With the rapid advancement of generative models, highly realistic image synthesis has posed new challenges to digital security and media credibility. Although AI-generated image detection methods have partially addressed these concerns, a substantial research gap remains in evaluating their performance under complex real-world conditions. This paper introduces the Real-World Robustness Dataset (RRDataset) for comprehensive evaluation of detection models across three dimensions: 1) Scenario Generalization: RRDataset encompasses high-quality images from seven major scenarios (War and Conflict, Disasters and Accidents, Political and Social Events, Medical and Public Health, Culture and Religion, Labor and Production, and everyday life), addressing existing dataset gaps from a content perspective. 2) Internet Transmission Robustness: examining detector performance on images that have undergone multiple rounds of sharing across various social media platforms. 3) Re-digitization Robustness: assessing model effectiveness on images altered through four distinct re-digitization methods. We benchmarked 17 detectors and 10 vision-language models (VLMs) on RRDataset and conducted a large-scale human study involving 192 participants to investigate human few-shot learning capabilities in detecting AI-generated images. The benchmarking results reveal the limitations of current AI detection methods under real-world conditions and underscore the importance of drawing on human adaptability to develop more robust detection algorithms.
Abstract:Compared to width-wise pruning, depth-wise pruning can significantly accelerate inference in resource-constrained scenarios. Howerver, treating the entire Transformer layer as the minimum pruning unit may degrade model performance by indiscriminately discarding the entire information of the layer. This paper reveals the "Patch-like" feature relationship between layers in large language models by analyzing the correlation of the outputs of different layers in the reproducing kernel Hilbert space. Building on this observation, we proposes a sliding layer merging method that dynamically selects and fuses consecutive layers from top to bottom according to a pre-defined similarity threshold, thereby simplifying the model structure while maintaining its performance. Extensive experiments on LLMs with various architectures and different parameter scales show that our method outperforms existing pruning techniques in both zero-shot inference performance and retraining recovery quality after pruning. In particular, in the experiment with 35\% pruning on the Vicuna-7B model, our method achieved a 1.654\% improvement in average performance on zero-shot tasks compared to the existing method. Moreover, we further reveal the potential of combining depth pruning with width pruning to enhance the pruning effect. Our codes are available at https://github.com/920927/SLM-a-sliding-layer-merging-method.
Abstract:Image classification serves as the cornerstone of computer vision, traditionally achieved through discriminative models based on deep neural networks. Recent advancements have introduced classification methods derived from generative models, which offer the advantage of zero-shot classification. However, these methods suffer from two main drawbacks: high computational overhead and inferior performance compared to discriminative models. Inspired by the coordinated cognitive processes of rapid-slow pathway interactions in the human brain during visual signal recognition, we propose the Diffusion-Based Discriminative Model Enhancement Framework (DBMEF). This framework seamlessly integrates discriminative and generative models in a training-free manner, leveraging discriminative models for initial predictions and endowing deep neural networks with rethinking capabilities via diffusion models. Consequently, DBMEF can effectively enhance the classification accuracy and generalization capability of discriminative models in a plug-and-play manner. We have conducted extensive experiments across 17 prevalent deep model architectures with different training methods, including both CNN-based models such as ResNet and Transformer-based models like ViT, to demonstrate the effectiveness of the proposed DBMEF. Specifically, the framework yields a 1.51\% performance improvement for ResNet-50 on the ImageNet dataset and 3.02\% on the ImageNet-A dataset. In conclusion, our research introduces a novel paradigm for image classification, demonstrating stable improvements across different datasets and neural networks.




Abstract:Diffusion models have achieved impressive success in generating photorealistic images, but challenges remain in ensuring precise semantic alignment with input prompts. Optimizing the initial noisy latent offers a more efficient alternative to modifying model architectures or prompt engineering for improving semantic alignment. A latest approach, InitNo, refines the initial noisy latent by leveraging attention maps; however, these maps capture only limited information, and the effectiveness of InitNo is highly dependent on the initial starting point, as it tends to converge on a local optimum near this point. To this end, this paper proposes leveraging the language comprehension capabilities of large vision-language models (LVLMs) to guide the optimization of the initial noisy latent, and introduces the Noise Diffusion process, which updates the noisy latent to generate semantically faithful images while preserving distribution consistency. Furthermore, we provide a theoretical analysis of the condition under which the update improves semantic faithfulness. Experimental results demonstrate the effectiveness and adaptability of our framework, consistently enhancing semantic alignment across various diffusion models. The code is available at https://github.com/Bomingmiao/NoiseDiffusion.